
Erasure-Coding Based Routing for Opportunistic Networks

Yong Wang, Sushant Jain†, Margaret Martonosi, Kevin Fall‡

Princeton University, †University of Washington, ‡Intel Research Berkeley

ABSTRACT
Routing in Delay Tolerant Networks (DTN) with unpredictable node
mobility is a challenging problem because disconnections are preva-
lent and lack of knowledge about network dynamics hinders good
decision making. Current approaches are primarily based on redun-
dant transmissions. They have either high overhead due to exces-
sive transmissions or long delays due to the possibility of making
wrong choices when forwarding a few redundant copies. In this pa-
per, we propose a novel forwarding algorithm based on the idea of
erasure codes. Erasure coding allows use of a large number of re-
lays while maintaining a constant overhead, which results in fewer
cases of long delays.

We use simulation to compare the routing performance of using
erasure codes in DTN with four other categories of forwarding al-
gorithms proposed in the literature. Our simulations are based on
a real-world mobility trace collected in a large outdoor wild-life
environment. The results show that the erasure-coding based algo-
rithm provides the best worst-case delay performance with a fixed
amount of overhead. We also present a simple analytical model to
capture the delay characteristics of erasure-coding based forward-
ing, which provides insights on the potential of our approach.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing protocols

General Terms
Algorithms, Performance, Theory

Keywords
Routing, Delay Tolerant Network, Erasure Coding

1. INTRODUCTION
Opportunistic networks are an important class of DTNs in which

contacts (time-window when data can be exchanged) appear op-
portunistically without any prior information. Examples of such
networks are sparse mobile ad hoc networks, such as ZebraNet [8],
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where no contemporaneous end-to-end path may exist due to radio
range limitations. Routing becomes challenging in such networks
because contact dynamics are not known in advance and no sin-
gle path can be relied upon. Most current approaches are based on
some kind of data replication over multiple paths [14, 8]. In this
paper, we propose an alternate method of improving delay perfor-
mance. The basic idea is to erasure code a message and distribute
the generated code-blocks over a large number of relays. Compared
to sending a full copy of the message over a relay, only a fraction
of code-blocks are sent over each relay. This fraction allows us to
control the routing overhead in terms of bytes transmitted. For sce-
narios like ZebraNet, where nodes are energy constrained, limiting
such overhead is an important design goal.

The basic idea of using erasure coding is simple and has been
explored in many applications [11]. However, it is not clear if and
when it will perform better than simpler alternatives based on pure
replications in DTNs. In this paper, we study the performance of an
erasure coding approach and other existing alternatives on a diverse
mobility scenarios with different node densities and moving pat-
terns. We use both synthetic and real-world DTN mobility traces
as input to our simulations. We discover that the erasure coding
approach can provide good delay guarantees by using a fixed over-
head. Fundamentally, the benefits of erasure coding arise in elimi-
nating cases when long delays arise due to bad choice of forward-
ing relays. Erasure coding allows the transmission to be spread
over multiple relays while using a fixed amount of overhead. This
results in a protocol much more robust to failures of a few relays or
some bad choices. We find that the erasure-coding based algorithm
is the least sensitive to different parameters in terms of message
latency and message delivery rate. Also, we derive an expression
for the delay distribution under a simple network model to argue
when and why the erasure coding approach outperforms other sim-
pler alternatives. In one extreme case, we show that the average
delay of a simple replication strategy will be infinite, whereas, by
using erasure coding the average delay can be reduced to a small
constant.

Erasure coding can also help combat packet loss due to bad chan-
nel quality or packet drops due to congestion. A full investigation
of the benefits of this aspect is outside the scope of this paper. Here,
our focus is on a less-conventional use of erasure coding: to achieve
better delay performance using a fixed amount of replication.

2. BACKGROUND
In an opportunistic network, reliable data delivery is often achieved

using replication to send identical copies of a message over multi-
ple paths to mitigate the effects of disconnections. Typical algo-
rithms differ based on their decisions as to who forwards the data,
at what time is the data forwarded, and to whom is the data sent. In



the following discussions, we define a contact as an opportunity to
communicate between two nodes and a relay denotes a forwarding
node.

• Flooding (flood): each node forwards any non duplicated
messages (including messages received on behalf of other
nodes) to any other node that it encounters. flood delivers
messages with the minimum delay if there are no resource
constraints, such as link bandwidth or node storage.

• Direct contact (direct): the source holds the data until it
comes in contact with the destination. direct uses minimal
resources since each message is transmitted at most once.
However, it may incur long delays.

• Simple replication (srep(r)): this is a simple replication
strategy in which identical copies of the message are sent
over the first r contacts. Here, r is the replication factor.
Only the source of the message sends multiple copies. The
relay nodes are allowed to send only to the destination; they
cannot forward it to another relay. This leads to small over-
head as the message flooding is controlled to take place only
near the source. This class of forwarding algorithms is also
known as the two-hop relay algorithm [3, 2]. There is a natu-
ral trade-off between overhead (r) and data delivery latency.
A higher r leads to more storage/transmissions but has lower
delays.

• History-based (history(r)): here history is used as an in-
dicator of the probability of delivery. Each node keeps track
of the probability that a given node will deliver its messages.
r highest ranked relays (based on delivery probability) are
selected as forwarding nodes. ZebraNet uses the frequency
at which a node encounters destination as an indicator of the
delivery probability. We use the same implementation as [8]
in our simulations.

A summary of these forwarding algorithms is listed in Table 1.

Algorithm Who When To whom
flood all nodes new contact all new
direct source only destination destination only
srep(r) source only new contact r first contacts

history(r) all nodes new contact r highest ranked

Table 1: Summary of various forwarding algorithms.

3. THE ERASURE-CODING BASED FOR-
WARDING ALGORITHM

As discussed in the previous section, most current approaches
for routing in opportunistic networks are based on sending multi-
ple identical copies over different paths. There is a fundamental
trade-off between overhead and delay. On one extreme, flooding
achieves the best possible delay but results in very high overhead.
The other extreme is protocols like direct which have low over-
head because they send only few copies or none at all. Lack of
knowledge about the topology dynamics prevents distinguishing
good paths from bad ones. Therefore, these protocols may result
in long delays if bad paths are selected. In this section, we describe
a forwarding algorithm based on the idea of erasure coding. Our al-
gorithm achieves better worst-case delay performance than existing
approaches with a fixed overhead.

3.1 Erasure coding background
Erasure codes operate by converting a message into a larger set

of code blocks such that any sufficiently large subset of the gener-
ated code blocks can be used to reconstruct the original message.
More precisely, an erasure encoding takes as input a message of
size M and a replication factor r. The algorithm produces M ∗ r/b
equal sized code blocks of size b, such that any (1+ε)·M/b erasure
coded blocks can be used to reconstruct the message. Here, ε is a
small constant and varies depending on the exact algorithm used,
such as Reed-Solomon codes or Tornado codes. The selection of
algorithms involve trade-offs between coding/decoding efficiency
and the minimum number of code blocks to reconstruct a message.
For example, Tornado codes have efficient encoding and decod-
ing steps based on simple operations such as XOR, at the cost of
slightly higher ε. A thorough discussion of the various trade-offs is
presented in [11]. The choice of exact erasure coding algorithm is
not important in our forwarding algorithm. The key aspect is that
when using erasure coding with a replication factor of r, only 1/r
of the code blocks are required to decode the message. Therefore,
we ignore constant ε for simplicity. Constant b is the block-size and
is implementation dependent.

3.2 Erasure coding based forwarding (ec)
Our erasure-coding based forwarding algorithm can be under-

stood as an enhancement to the simple replication algorithm (srep)
described in Section 2.

In srep with a replication factor r, the source sends r identi-
cal copies over r contacts and relays are only allowed to send di-
rectly to the destination. In the erasure-coding based algorithm, we
first encode the message at the source and generate a large number
of code blocks. The generated code blocks are then equally split
among the first kr relays, for some constant k. In comparison with
srep, this approach uses a factor of k more relays and each relay
carries a factor of 1/k less data. However, the number of bytes
generated are rM , the same as the number of bytes generated by
srep (r).

Now by definition of erasure coding (with rate r, message size
M ), the message can be decoded at the destination if 1/r of the
generated code blocks are received. Since code blocks are divided
equally among kr relays, the message can be decoded as soon as
any k relays deliver their data if we assume that no code blocks are
lost during transmissions to and from a relay.

When k = 1, the erasure coding approach has the same effect as
the simple replication approach, which is, to use the first r relays
and to each carry a copy of the original message.

3.3 Benefits of erasure coding in forwarding
In simple replication, r relays are used to improve the delay per-

formance. The erasure-coding based approach, instead, utilizes kr
relays for the same amount of overhead. Therefore, one can ex-
pect that the chances of at least some relays having low delays are
higher, compared to using only r relays. At the same time, erasure
coding requires at least k relays to succeed (instead of 1 in srep)
before the data can be reconstructed. Therefore, if the number of
such low-delay relays are larger than k, the erasure-coding based
approach will successfully deliver the message with a lower delay
than simple replication. Thus, the fundamental question is whether
to use r relays and wait for one to succeed or use r ∗ k relays and
wait for k relays to succeed. We answer this question using a sim-
ple analytical model in Section 5. The main observation is that if k
is large, the delay distribution converges to a constant. Therefore,
with the erasure-coding based approach, one can be almost assured
of a constant delay.



4. EVALUATION
In this section, we use simulation to compare forwarding al-

gorithms discussed in Section 2 and the erasure-coding based ap-
proach presented in Section 3.

4.1 Methodology
We use dtnsim, the discrete event simulator for DTN environ-

ments from [6]. We implemented the following routing algorithms
in dtnsim: flooding (flood), direct contact routing (direct),
history-based routing (history), simple replication routing (srep)
and erasure-coding based routing (ec). For srep and ec, we rep-
resent different replication factors and number of relays used to
split, using srep-repr and ec-repr-pn. Here, r is the replication
factor and n are the number of relays among which code blocks are
divided.

We simulate using a real-world mobility trace collected as part
of a wildlife tracking experiment in Kenya. The mobile network
was deployed by the ZebraNet group in January, 2004 [15]. Track-
ing collars are placed on the necks of selected zebras. Each collar
uses GPS to record its position data every 8 minutes, and period-
ically sends back position log data to a mobile base station (e.g.,
a vehicle). Due to extreme weather and waterproofing issues, as
well as antenna problems, only one tracking collar returned a com-
plete set of uninterrupted movement data for the whole 32-hour
duration. Due to such limitations 1, we create a semi-synthetic mo-
bility model as follows: we synthesize node speed and turn angle
distributions from the observed data and create other node move-
ments following the same distribution. We scale the grid size to
6km×6km with a radio range of 1km. Initially, the nodes are ran-
domly distributed in the grid. The base station moves along a rect-
angular path near the grid boundary. All messages are of size 1M.
Each node generates 12 messages every day. The total duration of
simulation is 16 days. Another mobility model based on heavy-
tailed inter-contact times is discussed in Section 4.4.

We compare the routing performance of different forwarding al-
gorithms using the following three metrics:

• Data success rate: the ratio of the number of messages that
are delivered to the destination within a time T (deadline).
If T is unspecified, it is considered to be the whole duration
of the simulation, i.e 16 days.

• Data latency: the duration between message generation and
message reception (at its destination). In a DTN, latency may
not be the most critical issue. However, it is always desirable
to have fast data delivery whenever possible. The latency
distribution metric measures how efficiently a protocol uses
the available contact opportunities.

• Routing overhead: the ratio of the number of bytes trans-
mitted to the number of bytes generated during the simula-
tion time. This metric measures the extra data transmitted
for each message generated, while a metric based solely on
the number of message transmissions will overlook the fact
that ec has smaller message sizes. The radio transmission
energy is proportional to the total number of byes transmit-
ted. Therefore, this metric reflects the energy efficiency of
the forwarding algorithm.

1At the moment, we are working on collecting more node traces
during our second field trip in June, 2005. We will work on adjust-
ing the model once we have those node traces available.
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(b) Contact duration distribution

Figure 1: Cumulative distribution plots for inter-contact times
and contact durations for the ZebraNet trace. The figure plots
these two metrics for four randomly selected links. Other links
show similar characteristics. The contact duration distribution
uses a different x-axis range to separate different curves. Ob-
serve that inter-contact time patterns show significant variation
and can be very long in some cases.

4.2 Zebra trace analysis
To begin our analysis, we first characterize the contact opportu-

nities in the ZebraNet trace, with a focus on inter-contact time and
contact durations. These two metrics are important in understand-
ing the behavior of different forwarding algorithms on the ZebraNet
trace. Simply put, inter-contact time is the time interval for which
a link is down (no communications are possible during this time)
and contact duration is the interval for which a link is up.

Figure 1 plots the distribution of these two metrics for four ran-
domly selected pairs of nodes (links) in the ZebraNet trace. Since
almost all the links in the trace show similar characteristics, we just
use these four random links as examples.

As shown in Figure 1(a), the inter-contact time distribution has
few cases when a link is broken for a very long time. This ob-
servation is important because such inter-contact time patterns can
lead to extremely long delays when using a naive forwarding al-
gorithm. As expected in such a sparse network, link up-times are
relatively short (as compared to the link down times) and therefore,
it is important to efficiently utilize the available communication op-
portunity.

4.3 Impact of node density

4.3.1 Data latency distribution
Figure 2(a) and 2(b) show the data latency distribution for the
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Figure 2: Latency distribution for different forwarding algo-
rithms. Traffic injection rate is 12 messages per day. The
distribution is shown in Complementary CDF (CCDF) curve.
A numeric presentation of this figure is in Table 2 which lists
the exact 50th, 90th and 99th percentiles delay. The erasure-
coding based approach has significantly smaller tail than other
approaches (except flood). flood has the lowest latencies but
has high overhead as discussed later.

ZebraNet trace with 34 nodes and 66 nodes respectively. Discount-
ing source and destination, the total number of relays are 32 and
64 respectively. The distribution is shown in Complementary CDF
(CCDF) curve.

Table 2 shows various data latency percentiles for both 34-node
and 66-node experiments to facilitate the comparison of worse-case
delay performance among all the algorithms considered.

Generally, ec has a higher 50th percentile compared to other al-
gorithms as shown in both Figure 2(a) and Figure 2(b) but a lower
99th percentile. This is because it takes longer to find enough
relays to distribute data replicas. However, once ec distributes
enough code blocks by forwarding along multiple relays (the num-
ber of relays is larger than that used by srep), it takes a much
shorter time to transfer the messages to the destination since any
n/r relays are required to be successful. Since n is much larger
than r, ec can fully utilize the diversity of multiple relays and is
very robust to bad performance of individual relays. That is, in
the presence of unpredicted failures or mobility of some of the re-
lays, ec still has a good chance of sending the messages to the
destination by routing code blocks through other functional relays.

Algorithm
34 nodes 66 nodes

50% 90% 99% 50% 90% 99%
ec-rep2-p8 0.44 0.84 1.32 — — —

ec-rep2-p16 0.53 0.85 1.21 0.51 0.83 1.17
ec-rep2-p32 — — — 0.59 0.82 1.04

srep-rep2 0.24 0.88 1.70 0.25 0.89 1.91
direct 0.49 1.63 3.27 0.51 1.79 3.54
history 0.18 0.87 9.50 0.14 0.72 10.83
flood 0.013 0.044 0.12 0.00012 0.0091 0.032

Table 2: Latency (in days) for different algorithms for two dif-
ferent node densities. This is the same data as shown in Figure
2. We see that ec has significantly lower 99th percentile la-
tency. This indicates that ec is effective in getting rid of very
high latency cases.

Therefore, erasure-coding based routing is a promising candidate
for opportunistic networks where (1) relay failures are prevalent
and delays are unpredictable, and (2) minimizing the worst-case
delay is important.

This observation is further supported by the data shown in Fig-
ure 2(b) where node density is higher. Given more contacts and re-
lays, the CCDF curves of all forwarding algorithms become steeper.
This is because there are more contacts overall. ec, as we have ex-
plained, still has the lowest 99th percentile and the sharpest data
latency curve. Therefore, given enough relay opportunities, ec has
the best performance in delivering most of the messages the fastest
among all the algorithms considered.

Simple replication, direct contact, and history-based algorithms,
on the other hand, have very long tails (messages with much longer
delays). This is because they use a small number of relays. There-
fore, they cannot guarantee when these relays will see the desti-
nation. Very likely, some packets may encounter very long delays
by selecting some relays that fail to deliver the message promptly.
In the long run however, with sufficient buffer space, all messages
will eventually be delivered. The lower the replication factor r, the
longer the tail will be. This is illustrated by comparing the CCDF
of srep-rep2 and direct. Since srep-rep2 replicates its
data to two other relays, the chance of losing contact opportunities
is lower than that for direct. Hence, srep-rep2 has a shorter
tail than direct.

The history approach, though having the lowest 50th percentile
delay, also has the longest tail among all the algorithms considered.
The performance of history is dependent on the accuracy of its
selection of highest ranked relays based on past statistics. If the
decision is relatively accurate, it tends to find relays that will for-
ward the data to the destinations very quickly. On the contrary, if
the relays selected based on this heuristic do not reflect future for-
warding probabilities, very long delays may be incurred. However,
using certain timeout and retransmission schemes, these long-delay
messages might be masked out which makes the history approach
more attractive over the others in networks with predictable node
movement. This is an interesting research direction to explore.

Finally, observe that the flood protocol in Figure 2(a) and Fig-
ure 2(b), has latency distribution curves which are almost vertical.
This shows that flood has very low delays for all messages.

4.3.2 Routing overhead
Table 3 lists the routing overhead corresponding to each forward-

ing algorithm. Routing overhead is measured using the ratio of
bytes transmitted to the bytes generated. Since both ec and srep
transmit a fixed amount of data with respect to the data generated,



Algorithm
Overhead

(34 nodes) (66 nodes)
ec-rep2-p8 3.96 —

ec-rep2-p16 3.96 3.98
ec-rep2-p32 — 3.98

srep-rep2 3.98 3.99
direct 1.0 1.0
history 30.28 59.61
flood 68.0 132.0

Table 3: Routing overhead of different forwarding algorithms
for two node densities. Forwarding algorithms (such as ec and
srep) which employ replication only at the source has signifi-
cantly lower overhead. flood has almost an order of magni-
tude higher overhead and does not scale well as the number of
nodes increase. The high overhead of history results from
our implementation in dtnsim2 where a copy of message is
transmitted even when some copy of the original message has
been delivered. Some timeout scheme can solve this problem by
reducing unnecessary message transmissions.

their overhead is constant. For an algorithm with a replication
factor of 2, the overhead should be 4, with 2 from the source to
the relay and from the relay to the destination and the other 2 for
the other relay. On the other hand, in both history and flood
where relays also forward to other relays (and there are no restric-
tions on replication factor), multiple identical copies of the original
message are transmitted even after the first delivery of the origi-
nal message. As Table 3 shows, normally history has a higher
overhead than srep and ec. This situation becomes worse when
more contacts are available and very likely, more duplicate mes-
sages will be transmitted. For flood, almost all the nodes could
receive a copy potentially and the overhead is proportional to 2n,
where n is the number of nodes. The factor of two comes because
every relay sends to the destination (even if the destination has al-
ready received the message) in our implementation. Some simple
timeout scheme, such as one that imposes a maximum number of
hops a message can traverse, can alleviate this problem. However,
data delivery rate will decrease if the number of hops a message
can traverse is too small. The exploration of such a trade-off is part
of our future work.

In summary, in terms of routing overhead, ec and srep scale
well with node density and network size, while flood does not.

4.3.3 Data success rate

Algorithm 0.25 day 1 day 2 days 4 days 8 days
ec-rep2-p8 22.6% 95.9% 100% 100% 100%

ec-rep2-p16 9.2% 94.6% 100% 100% 100%
srep-rep2 51.8% 92.5% 99.6% 99.9% 99.9%

direct 32.0% 74.6% 94.2% 99.5% 99.9%
history 58.4% 87.9% 92.7% 94.6% 95.3%
flood 100% 100% 100% 100% 100%

Table 4: Data success rate of different algorithms for different
deadlines. Even with extremely large deadline of 8 days sim-
ple replication can not transfer all its data. Also note that, ec
has low data success rate when deadlines are extremely small
and hence, caution must be used before deciding to use erasure
coding.

Table 4 shows the data success rate for different algorithms with
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Figure 3: Latency distribution of different forwarding algo-
rithms for the Pareto trace. We use a log-scaled x-axis for clar-
ity. Similar to the ZebraNet trace we observe that tails are sig-
nificantly smaller when ec is used, i.e., the worst case delays
for other approaches are significantly higher. Since x-axis is log
scale, the ratio of the worst case delay values is higher than in
the ZebraNet trace.

deadlines smaller than the total simulation time. All deadlines are
specified in units of days. The data success rate for ec is low if the
deadlines are less than 6 hours long. However, for relatively long
deadlines (between 1 and 2 days), ec has the highest data success
rate. This result can be observed directly by looking at the data
latency distribution curve. Because ec has a lower 99th percentile
of latency distribution, it will deliver more messages before that
time and hence a higher data success rate. Therefore, if achieving
low latencies for all messages or high success rate within certain
reasonable deadlines are the application requirement, ec should be
used.

On the other hand, history has the highest data success rate
when the deadline is less than 6 hours. This is because history
can find good relays without the need to distribute copies of data
to many relays. The performance improvement of history upon
direct and srep comes directly from the efficiency of its selec-
tion of good relays. However, since history has long tails in its
data latency distribution curve, its data success rate is relatively low
compared to other approaches.

4.4 Impact of mobility model
In this section, we evaluate the performance of ec and other ap-

proaches on a different mobility model. Our results here demon-
strate that the idea of using erasure-coding based routing can be
applied to different scenarios other than the ZebraNet trace. We
find that the benefits of erasure coding are greater when the inter-
contact times are heavy-tailed. We use such a heavy-tailed distri-
bution for simulations in this section. The mobility model is based
on the approximate power law distribution for inter-contact times
observed for another set of real-world traces described in [2].

Figure 3 plots the CCDF of the data latency distribution for the
Pareto trace. The other simulation parameters are exactly the same
as in Section 4.1. Observe that all curves are much sharper than the
ZebraNet traces. Again, ec has the sharpest CCDF curve and the
lowest 99th percentile delay, while all the other algorithms have
higher worst case delays.

5. DELAY DISTRIBUTION ANALYSIS
This section discusses the theoretical behavior of the delay dis-



tribution when the erasure-coding based approach is used. We
also theoretically compare the simple replication approach with the
erasure-coding based approach.

5.1 Network model and assumptions
We consider the following scenario. Consider a source and desti-

nation pair which can communicate via one of the n distinct relays.
Delay seen if relay i is used is a random variable with distribu-
tion Xi. Using a random variable allows us to model the fact that
the delay encountered in using a relay is not known precisely. We
assume the delay variables (Xi) to be identical and independent.
Although a strong assumption, this should be seen as a first step to-
wards a more sophisticated analysis. Even with these assumptions,
we show interesting behavior which gives fundamental insights on
the potential of using an erasure-coding based approach. We now
introduce the concept of order statistics, the mathematical theory
that is used to derive results.

5.2 Order statistics background
Consider n identical and independent (IID) random variables

X1,X2 . . .Xn. Let Y n
1 , Y n

2 , . . . Y n
n be the random variables ob-

tained by sorting the set X1, X2 . . .Xn in increasing order. The
random variable Yk is called the kth order statistic.2 One can ob-
tain the distribution of Yk in the following form [12]. Let F (x) be
the cumulative distribution function (CDF) of the variables Xi and
f(x) be the probability distribution function (PDF) (Xi are identi-
cal). Then the PDF (denoted by gn

k (y)) of Y n
k is given by:

gn
k (y) = f(y)

n!

(k − 1)!(n− k)!
F (y)k−1(1 − F (y))n−k (1)

5.3 Results for the delay distribution
In the erasure-coding based approach, the source erasure-codes

a message and divides the code blocks equally among n relays. For
simplicity, we assume that n is a multiple of r, and n = rk. A
destination can decode a message as soon as k relays successfully
deliver data. Let ECn

r denote the delay distribution when ec is
used with r replication and n relays. Using the terminology of
order-statistics ECn

r is defined as the kth order statistic over the
variables {X1,X2, . . . ,Xn}.

ECn
r = Y n

k (2)

In simple replication, r relays are used and the message can be
decoded when one of these relays successfully delivers data. Al-
though the choice of relays could vary with the amount of infor-
mation available to the forwarding algorithm, for simplicity we as-
sume that the relays 1 . . . r are used by the simple replication ap-
proach. Therefore, for simple replication, the observed delay is the
minimum of the random variables {X1, X2, . . . ,Xr}.

srepr = Y r
1 (3)

Equation 1 (for distribution of the kth order statistic) can now be
used to obtain the delay distribution. However, it is hard to directly
compare the statistics of these distributions from the above formula.
In the rest of this section, we discuss two aspects based on the above
analysis. First, we discuss the behavior of ECn

r as a function of n (
n measures how aggressively erasure coding is used). In particular,
we derive the asymptotic distribution for ECn

r (when n → ∞).
Second, we compare srep and ECn

r analytically, for both finite n
and as n → ∞.

2Y n
1 ≡ minj(Xj) and Y n

n ≡ maxj(Xj).

5.4 Understanding the nature of ECn
r

The exact distribution of ECn
r depends on the distribution of

Xi. For our analysis, we consider the case when Xi are given
by the Pareto distribution. Recent work on mobility analysis has
hinted that such delay distributions are heavy-tailed and thus it is
an interesting case to discuss in-depth [2]. We also briefly consider
the more traditional case when Xi are exponential (for example,
when the underlying mobility model is random waypoint).

For a Pareto distribution, the probability distribution function is
given by f(x) = (bα)αx−α−1 . The constant b is its scale param-
eter, and α is the power law coefficient. For α < 1, E[X] = ∞
(i.e., using only one relay will have an infinite average delay). 3

To understand the nature of ECn
r , we plot the PDF of ECn

r for
different values of n. Figure 5.4 shows the PDF and CDF respec-
tively. We consider the case when α = .6. The choice of α is
arbitrary and the only important aspect is that it presents a case
when the distribution is extremely heavy-tailed.

Key Observations. As n increases, the distribution becomes
thinner and more bell-shaped. In particular, the variance of the
distribution reduces as n increases. Low variance means that the
probability of encountering very large delays due to bad choice of
relays is reduced. Also note that the mean delay reduces as n in-
creases. We find that with n = 32, the mean delay is within 10%
of the delay obtained when n = ∞ relays are used. This shows
that convergence is reasonably quick, and most of the advantages
of erasure coding can be obtained by using a moderate number of
relays.

The following result formalizes the observations made above.
The proof is based upon limiting analysis of quantiles of large
number of independent variables and is beyond the scope of this
paper [12].

RESULT 1. Let the underlying delay variables Xi have a con-
tinuous PDF f(x). Let ζ 1

r
denote the 1

r

th
quantile of the random

variable Xi. 4 Then for sufficiently large n, the distribution of
ECn

r converges to the normal distribution in the following man-
ner:

ECn
r is N (ζ 1

r
,

(r − 1)

nf2(ζ 1
r
)
) (4)

COROLLARY 1.

lim
n→∞

E[ECn
r ] = ζ 1

r
(5)

lim
n→∞

V ariance[ECn
r ] = 0 (6)

It follows immediately that, for large n, the distribution of ECn
r

converges to a constant. The mean delay is 1
r

th
quantile of the

original distribution. This result is also interesting because it in-
dicates that only the ζ 1

r
of the original distribution is relevant to

characterize the performance when erasure coding is used.

COROLLARY 2. When Xi have Pareto distributions with scale
parameter b and power-law coefficient α, E[ECn

r ] is given by,

lim
k→∞

E[ECn
r ] = b (

r

r − 1
)

1
α (7)

3E[·] is used to denote expectation of a random variable.
4By definition, Prob(Xi < ζ 1

r
) = 1

r
. ζ 1

r
is obtained by the in-

verse CDF function.
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Figure 4: PDF and CDF of the delay distribution for differ-
ent values of n when using the erasure-coding based approach.
Underlying delay distribution is Pareto with α = .6, and b = 1.
r = 2. For each line, the value after the label Avg denotes the
average value of the distribution (E[ECn

r ]). We observe that
as n increases the distribution becomes thinner and more bell-
shaped.

The above equation shows that for any value of α, the delay be-
havior of an erasure-coding based approach converges to a constant
(for any finite amount of replication factor r, such that r > 1). This
is particularly interesting because for α < 1, the delay of using any
single relay by itself is ∞. In fact, the srep algorithm, which uses
the first r relays, will also have an infinite delay on average if the
product rα < 1. For this case, the erasure-coding based approach
has infinitely better performance. This shows that for heavy-tailed
delay distributions, the erasure-coding based approach is able to get
rid of the tail (i.e long delays) whereas simple replication can not.

For the Pareto case, we can also derive the value of E[ECn
r ] for

a finite value of n. This is given by the following expression,

b

E[ECn
r ]

= (1− 1

nα
)(1− 1

(n− 1)α
) . . . (1− 1

(n − (n/r) + 1)α
)

This expression is useful in determining the value of n at which the
expected delay converges to its eventual value ζ1

r
.

5.5 Comparing ec and srep

We argued above that the delay distribution when using erasure
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Figure 5: Comparing percentiles delay for ec and srep.
r = 2, n = 32. a) Xi are exponential b) Xi are Pareto (α = .6).
Delays are normalized to the ζ 1

r
of the underlying distribution

(Xi), which makes the plots independent of the scale parame-
ters of the underlying distribution. The plot is obtained by first
determining delay distributions in accordance to Equation 2 for
the ec approach and Equation 3 for the simple replication ap-
proach. The percentiles are then analytically computed by in-
verting the cumulative distribution function. ec approach per-
forms significantly better than srep when comparing higher
percentiles of the resultant delay distribution. In fact, ec ap-
proach has almost non increasing delay values for different per-
centiles.

coding has low variance and therefore, it has lower worst case de-
lay than simple replication. To support this, we compare the pth

percentile delay for ec and srep. The pth percentile delay for
a random delay variable Z is defined as the value w such that
Prob(Z ≤ w) = p. Figure 5 compares percentiles delay for srep
and ec for two underlying delay distributions (Xi), a) Exponential,
b) Pareto with α = .6. r = 2 for both srep and ec, and n = 32
for ec. The delay values for each approach are normalized to the
ζ 1

r
of the underlying delay distribution Xi. This makes the plots

independent of the scale parameters of the underlying distribution.
For lower percentiles, the erasure-coding based approach has

higher delays. This implies that for the few best cases, simple repli-



cation has lower delays than ec. However, the delays observed
with ec towards the higher percentiles are much lower than srep.
For ec, even for a moderate value of n = 32, delay values across
percentiles are more or less the same, and close to the ζ1

r
. For sim-

ple replication, delays for higher percentiles are very high. In this
example, for the Pareto case, the 99th percentile delay for srep is
25 times more than the erasure-coding based approach.

6. RELATED WORK
A series of efforts [8, 14, 9] in the context of sensor and mobile

ad-hoc networks explore various forwarding algorithms for oppor-
tunistic networks. These techniques employ a form of data dupli-
cation (typically based on controlled flooding) to achieve eventual
delivery.

The ZebraNet system uses a history-based protocol that lever-
ages the contact history of nodes to the base station [8]. Sim-
ple replication approach which uses only one relay was shown to
achieve optimal throughout in a mobile ad-hoc network [3] and has
been further analyzed in [7, 2].

Erasure codes have recently been discussed and applied to many
network applications, including achieving efficient distribution of
bulk data in overlay networks [1] and P2P networks [10], coping
with unreliable transmissions in wireless sensor networks [13], and
achieving reliability in large-scale distributed storage systems [4].
Applying erasure coding to combat uncertainty in delay perfor-
mance is the focus of our work. Since the idea of erasure-coding
based forwarding is orthogonal to all other forwarding approaches,
it can potentially be combined with them.

7. CONCLUSIONS AND FUTURE WORK
We presented a novel forwarding algorithm based on the use

of erasure coding for opportunistic networks. The use of erasure
coding spreads the responsibility of forwarding over many nodes
while maintaining a fixed overhead. We showed using both analysis
and simulation against a real-world mobility trace that our erasure-
coding based approach significantly improves the worst case delay.
At the same time, it has no “very small delay” cases. This is a nat-
ural consequence of how this approach works. We believe that the
basic idea holds promise and an approach that combines erasure
coding with other techniques, such as simple replication, may give
us good performance on both fronts.

We have introduced the erasure coding idea in a simple setting
in which all nodes are equally good relays. If different nodes have
different characteristics, a more sophisticated approach to spread
erasure code blocks is required. This is part of our ongoing effort
and is discussed in [5]. We also plan to investigate the utility of the
erasure coding approach on more mobility traces with diverse char-
acteristics. Our analysis is preliminary and assumes that different
relays used for forwarding data have independent delay distribu-
tions. This assumption breaks down if erasure coding uses the best
n relays. Extending our analysis to incorporate such cases is an in-
teresting future direction. Finally, based on the observation that dif-
ferent approaches have distinct advantages under certain mobility
characteristics, it is desirable to have an adaptive strategy that se-
lects one routing scheme over another on-the-fly, trying to achieve
the best aspects of various forwarding algorithms.
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